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Abstract
A quasiparticle method based on a multisite s(p)–d mixing model is used to
calculate the exchange constants of dilute magnetic semiconductors (DMS).
The effective interaction, which is mediated by s(p) electrons, between d
electrons, was taken into account in an effective field approximation or a
coherent potential approximation (CPA). The equation-of-motion technique
was applied to Green functions to calculate the quasiparticle state density. The
exchange constants were calculated in a double-valence-band model, and the
microscopic parameter dependences of the exchange constants are investigated
for fixed valence band parameters in the model. A ferromagnetic d–d coupling
is obtained when the d energy level Ed is in the vicinity of the valence band top,
and an antiferromagnetic d–d coupling is obtained when Ed is in the vicinity of
the valence band bottom. The maximum of the d–d exchange constant Jdd(Ed)

increases with the mixing strength. Jdd increases with decreasing Fermi energy
EF, and the effect is more significant when Ed approaches the valence band
top. Jdd also increases with small magnetic impurity concentration x , then
reaches a maximum, and finally decreases sharply when x increases further.
The quasiparticle state density shows that the ferromagnetism originates from
the unsymmetrical broadening of the shallow d energy level in ferromagnetic
alignment and related lowering of the centre of gravity of the d state density.
Relevant experimental results are discussed on the basis of our calculation.

1. Introduction

A great deal of attention has been focused on III–V dilute magnetic semiconductors (DMS)
[1–4] due to their application potential in the fabrication of a different class of tunable
ferromagnetic devices, which are controlled by the carrier population in a semiconductor [5–7].
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There have been many efforts to achieve room temperature ferromagnetism in DMS [8–13]
because of their practical importance in spintronic devices. An important way to adjust the
magnetic properties of DMS is to change the combination of host material and magnetic
impurity atom [14–22]. The host materials for DMS are usually (Al, In, Ga)As, GaN, TiO2,
Zn(O,Te), Sb2Te3, etc. The impurity atoms are V, Cr,Mn, Fe, Co, Ni, etc. At present the highest
Curie temperature TC is about 110 K in p-type Ga1−x MnxAs [23], 333 K in In1−x MnxAs [12],
and 940 K in n-type Ga1−x Mnx N [9]. Ferromagnetism has been obtained not only in III–V
DMS, but also in other materials, such as Sb2−x Vx Te3 [19], Zn1−x Crx Te [21], Ti1−x Cox O2 [13],
and, moreover, the TC of Ti1−x Cox O2 exceeds 400 K.

Many theoretical studies have also been carried out [24–33]. An important subject in
these studies is the origin of the ferromagnetism in III–V DMS. The researchers in this field
have tried to use many models and/or mechanisms, such as RKKY, magnetic polaron, double-
exchange, and Zener model ones, to interpret the ferromagnetism in some respects [25, 26].
It has been shown that there were difficulties in using the former two models, the RKKY
and magnetic polaron ones, to explain the ferromagnetism in III–V DMS [25]. The double-
exchange model was originally proposed to explain the ferromagnetism in mixed-valence
manganites of perovskite structure [34, 35], such as (Lax Ca1−x)(MnIII

x MnIV
1−x)O3, but it may

be not suitable for DMS since the Mn atoms are impurities in DMS and the Mn atoms in the
two systems are not on an equal footing. The primary support for the double-exchange model
for DMS comes from ab initio calculations [25, 31–33]. The Zener model was originally
advanced for the ferromagnetism in transition metals [36]. Dietl et al have calculated TC

using the Zener model for various DMS, and obtained two important results [26]: (i) the TC of
Ga1−x Mnx N is above room temperature; and (ii) TC increases with the p-type carrier density.
The first result has been realized in experiments, and the second result also has been verified
by a large number of experiments. The Zener model is the most successful one among these
models.

Although a considerable amount of experimental data have already been accumulated
and many theoretical studies have been made, there are still some experimental results which
are difficult to understand within the framework of existing models. For Mn-doped GaN,
three controversial results were reported. Zajac et al observed antiferromagnetic ordering
with TN = 2.4 K in Ga1−x Mnx N [14]. Kuwabara et al obtained a paramagnetic Ga1−x MnxN
epilayer with a paramagnetic Curie temperature θp = 20 K [15] and Szyszko et al also obtained
paramagnetism in single-crystal Ga1−x Mnx N [16]. Theodoropoulou et al [37], Reed et al [8],
and Sonoda et al [9] reported ferromagnetism in Ga1−x MnxN with values of TC of 250, 228–
370, 940 K, respectively. The physics behind these controversial results is not understood.

According to the Dietl et al calculation based on the Zener model, TC should increase
with the carrier density [26]. There are also controversial results on this point in experimental
findings. Fukuma et al [22] observed carrier-enhanced ferromagnetic order in Ge1−x Mnx Te
and Matsukura et al [38] showed carrier-enhanced ferromagnetism using electric field
control in a field-effect transistor structure. However, Pearton et al found that the use of
superlattices to enhance the hole concentration did not produce any change in the ferromagnetic
ordering temperature in p-AlGaN/GaN superlattices after implantation with high doses
(3–5 × 1016 cm−2) of Mn, Fe, or Ni [20] and Slupinski et al found that the hole concentration
sufficient for producing TC = 50 K for In1−x Mnx As [39] is several times lower than the value
from the existing theory [26]. These facts indicate that the free carrier may not be responsible
for the high ferromagnetism transition temperature of DMS. Litvinov and Dugaev [30] made
calculations for the indirect exchange interaction caused by virtual electron excitations from the
magnetic impurity acceptor level to the valence band for the interpretation of ferromagnetism
in III–V DMS. Dietl et al [27] also showed that a high TC above room temperature is obtained
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for a low hole density in the Zhang–Rice limit. The two theoretical calculations are helpful
for understanding the role of free carriers; however, the controversial results on this point from
experiments still require further theoretical clarification. These experimental results also show
that the properties of III–V DMS are sensitive to their fabrication conditions or, alternatively,
the microscopic electronic structure parameters. A strong correlation between the location of
Mn sites and the Curie temperature has been found for ferromagnetic Ga1−x Mnx As [40]. The
experimental result indicates that it is necessary to study the dependence of the d–d exchange
interaction on the microscopic electronic structure parameters theoretically.

There are also controversial points in some existing models. In the double-exchange
model, the d hole is an important factor for obtaining ferromagnetism. In complete contrast
to the double-exchange model, the Zener model [26, 36] treats all d electrons of Mn atoms as
having spin S, and the possibility for d electrons to possess partially extended characteristics
is removed. In some cases, one may want to calculate the p–d exchange constant, the spin
polarization of the valence electron,and their temperature behaviours [41],but it is inconvenient
to start from two models.

In this paper a quasiparticle method for calculating the exchange constants of DMS is
developed on the basis of a more general microscopic model (the s(p)–d mixing model) [42]
and our previous work [43], and the exchange interaction in III–V DMS is investigated within
a double-valence-band model. In this method, first the quasiparticle energy and occupation
number are calculated from the s(p)–d mixing model Hamiltonian; then the relationship
between the exchange constants and these microscopic quantities is constructed, and hence
exchange constants are obtained. It will be revealed that the d–d exchange constant depends
on the position of the d level in the valence band of the host, the strength of the s(p)–d mixing,
the Fermi energy level EF, and the mean distance between magnetic atoms. Although the free
carrier concentration and the Fermi energy level affect the exchange interplay, they are not
decisive factors as regards achieving ferromagnetism; hence ferromagnetism can be obtained
in a p-type DMS as well as in a n-type DMS, and even in an insulator-like DMS.

The paper is organized as follows. Section 2 gives the formulae used to calculate the
exchange constants of DMS. In section 3, some general considerations on these formulae
are presented, and the concepts of resonant momentum and phase factor are also introduced.
The microscopic parameter dependence of the exchange constants and related discussions are
presented in section 4. The results obtained are summarized in section 5.

2. Method of calculation

In this section the method used to calculate the exchange constants from the multisite s(p)–d
mixing model Hamiltonian [44] is presented. The calculation procedure can be divided into
two steps. The first step is the calculation of the quasiparticle energy and the occupation
number from the multisite s(p)–d mixing model Hamiltonian for a magnetic configuration,
and the second step is the calculation of the exchange constants using the quasiparticle energy
and occupation number. We will describe the method in two steps.

2.1. Calculation of the quasiparticle energy and occupation number

We start from the multisite s(p)–d mixing model Hamiltonian [44]

Ĥ =
∑
diσ

Edn̂diσ + 1
2

∑
diσ

Ud n̂diσ n̂diσ +
∑
nkσ

Ee
nkĉ†

nkσ ĉnkσ

+
1√
N

∑
dinkσ

(Tdnσ ei�k·�ri â†
diσ ĉnkσ + T ∗

dnσ e−i�k·�ri ĉ†
nkσ âdiσ ), (1)
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where N denotes the total number of lattice points, i denotes the i th lattice point occupied by
a 3d impurity atom, and the sum over i extends over only the sites occupied by 3d impurity
atoms. The subscript d denotes local d energy level, n the energy band, k the momentum, and
σ the spin. â†

diσ (âdiσ ) is the creation (annihilation) operator for a local d electron, and ĉ†
nkσ

(ĉnkσ ) is the creation (annihilation) operator for an extended s(p) electron. In equation (1) the
first and second terms describe d electrons with a Hubbard repulsion energy Ud . The third term
describes s(p) band electrons in the host. The last term describes the mixing of d electrons
with s(p) electrons via a parameter Tdnσ . In a general case, Tdnσ should depend on momentum
k; however, its k dependence can be neglected as shown by Larson et al [45]. We will also
give a brief discussion of the neglect of the k dependence in section 3.

In the paper the equation-of-motion method is adopted to calculate retarded single-particle
thermodynamical Green functions; then the quasiparticle energy and occupation number are
obtained from the Green functions. The formulae are presented here in an intuitive manner, and
the details of the derivation procedure relevant to Green functions are given as a supplement
in appendix A.

Applying the Hartree–Fock approximation to equation (1), we obtain the Green function
〈〈âdiσ |â†

d ′i ′σ ′ 〉〉 from the following equation:

(ω − ediσ )〈〈âdiσ |â†
d ′i ′σ ′ 〉〉 = δdiσ,d ′ i ′σ ′ +

∑
d1i1 �=di

fdi,d1 i1(σ )〈〈âd1 i1σ |â†
d ′i ′σ ′ 〉〉, (2)

where

ediσ = Ed + Ud〈n̂diσ 〉 +
1

N

∑
nk

|Tdnσ |2
ω − Ee

nk

, (3)

fdi,d1 i1(σ ) = 1

N

∑
nk

Tdnσ T ∗
d1nσ ei�k·(�ri −�ri1 )

ω − Ee
nk

. (4)

In equations (3) and (4), ω should contain an infinitely small imaginary part i0+ for a retarded
Green function, and this convention will be used throughout this paper.

The effective interaction between two d electrons at lattice points i and i1 is taken into
account via fdi,d1 i1 in equation (2). A possible method for resolving equation (2) is the
perturbative approach, directly using (ω−ediσ )−1 as the propagator. However, the perturbative
solution to equation (2) is not adequate for us to calculate exchange constants in a situation
with a shallow d energy level. The perturbative approach breaks down when ρe

nk Tdnσ T ∗
d1nσ

(ρe
nk is the density of valence states |nk〉) is not a small quantity [46]. According to Larson’s

estimation, Tdnσ is about 0.8 eV for an electron in the vicinity of the valence edge Ev [45].
In the case of a narrow valence band, ρe

nk Tdnσ T ∗
d1nσ may not be a small quantity. Even if the

perturbative approach is suitable for calculating the quasiparticle energy, it may be not suitable
for calculating the difference between various magnetic configurations since ρe

nk(ω) shows a
sharp change with ω when it approaches Ev.

The above viewpoint as regards the perturbative solution to equation (2) can be elucidated
through a simplified model problem. Equation (2) can be regarded as a solution to an effective
Hamiltonian:

Ĥeff =
∑
diσ

ediσ â†
diσ adiσ +

∑
〈di,d1 i1〉σ

fdi,d1 i1(σ )a†
diσ ad1i1σ (5)

if the dynamical dependence of fdi,d1 i1 is neglected and fdi,d1 i1 becomes a real number. If a
superlattice limit and only the nearest-neighbour hopping terms are considered, the effective
Hamiltonian can be regarded as a conventional tight binding Hamiltonian (TBH) for a fixed ω.
From knowledge about the conventional TBH, we know that any finite order perturbation using
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(ω − ediσ )−1 as the propagator for this effective Hamiltonian is inadequate for characterizing
its essential extended state nature, so we should consider another approximation method.

Following the idea of a coherent potential approximation (CPA) for a disordered alloy [47],
we replace the free propagator (ω−ediσ )−1 with an effective propagator [ω − �(diσ)]−1 in the
second-order perturbative solution to equation (2), and the corresponding self-energy �(diσ)

of 〈〈âdiσ |â†
d ′i ′σ ′ 〉〉 is written as

�(diσ) = ediσ +
∑

d1i1 �=di

〈
fdi,d1 i1(σ ) fd1i1,di (σ )

ω − �(d1i1σ)

〉
. (6)

〈· · ·〉 in equation (6) denotes the average over a random distribution of magnetic atoms. Besides
this meaning, here the CPA has another important interpretation: in this coherent field, the
contributions of the scattering of order higher than the fourth cancel each other out, and
equation (6) provides a self-consistent condition for determining the self-energy. The latter
places the CPA beyond the conventional perturbative approximation, and this point will be
discussed further. The details about the averaging over a random distribution are given as a
supplement in appendix B.

If the free propagator (ω − ediσ )−1 in the second-order perturbative solution to the
Green function 〈〈cnkσ |c†

nkσ 〉〉 is replaced with the effective propagator [ω − �(diσ)]−1, a CPA
solution to the Green function of the s(p) band electron is obtained as

〈〈cnkσ |c†
nkσ 〉〉 =

(
ω − Ee

nk − 1

N

∑
di

|Tdnσ |2
ω − �(diσ)

)−1

. (7)

The valence electrons are scattered by d electrons in a coherent field, so their lifetime
becomes finite and they may be spin polarized. The self-energy correction term 1

N

∑
di

|Tdnσ |2
ω−�(diσ )

in equation (7) takes the above two points into account. On the basis of the same consideration,
the self-energy correction term is also inserted in equation (4), so equation (4) is rewritten as

fdi,d1 i1(σ ) = 1

N

∑
nk

Tdnσ T ∗
d1nσ ei�k·(�ri −�ri1 )

ω − Ee
nk − 1

N

∑
di

|Tdnσ |2
ω−�(diσ )

. (8)

In equation (6) the energy of interaction between d electrons is explicitly taken into account,
so the d quasiparticle energy depends on the relative orientation of local spins. Once the type
of magnetic coupling is known, the Green functions of d and s(p) electrons can be obtained
from the above formulae, and the density of quasiparticles (ρdσ (ω), ρnkσ (ω)) is obtained
from the Green function according to the spectrum theorem; then the quasiparticle energy and
occupation number are obtained via the following formulae:

〈Edσ 〉M =
∫

ωρM
dσ (ω) f (ω) dω,

〈ndσ 〉M =
∫

ρM
dσ (ω) f (ω) dω,

〈Enkσ 〉M =
∫

ωρM
nkσ (ω) f (ω) dω,

〈nnkσ 〉M =
∫

ρM
nkσ (ω) f (ω) dω,

(9)

where f (ω) is the Fermi–Dirac distribution function, and the label M denotes a particular
magnetic configuration.
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2.2. Calculation of exchange constants

After the procedure of statistical averaging has been carried out, an ordered sublattice can be
used to calculate some macroscopic quantities (e.g. TC), since the disorder effect has been
taken into account in the calculable quantities in the s(p)–d mixing model. It is assumed that
the sublattice has an enlarged lattice constant a/x1/3 (a is the lattice constant of the host; x
is the concentration of impurity atoms) and the same symmetry elements as the host lattice.
If local moments exist in the DMS, the coupling between local magnetic moments can be
described by the Heisenberg Hamiltonian

Ĥh = −Jdd

∑
〈i j〉

�̂Si · �̂S j . (10)

Here the sum over i and j extends over the sites in the order sublattice, and the exchange
constant Jdd should be understood in the sense of statistical averaging. If the relationship
between the exchange constants and the calculable quantities in the s(p)–d mixing model is
constructed, we can calculate the exchange constants via the calculation of the corresponding
quantities in the s(p)–d mixing model. As all the methods are based on a microscopic
Hamiltonian, the relationship between equations (1) and (10) is also constructed from the
energy aspect. In the kinetic approach [45], a fourth-order perturbative matrix element
connecting two different spin states for the mixing term in equation (1) is treated as the
equivalent quantity connecting the two Hamiltonians. In other approaches, the difference in
total energy [48] or free energy [26] between two magnetic configurations is treated as an
equivalent difference between the two Hamiltonians. In our approach, quasiparticle energy is
employed to construct the relationship between the two Hamiltonians.

For convenience, an operator

Ĥh(i) = −2Jdd

∑
δ �=0

�̂Si · �̂Si+δ (11)

is introduced; then the Heisenberg Hamiltonian can be written in a concise form: Ĥh =∑
i Ĥh(i). For a particular magnetic configuration Mi , where the angle between the nearest-

neighbour moments is θi , equation (11) is written as

〈Ĥh(0)〉Mi = − 1
2 Jddz

[∑
d

(〈nd↑〉Mi − 〈nd↓〉Mi )

]2

cos θi (12)

in the mean field approximation. Here z is the mean number of nearest-neighbour magnetic
atoms in the sublattice. Without loss of generality, we use z = 6, as for the host lattice, in
the following actual calculation. The assumption as regards the value of z does not affect the
evaluation of the Curie point TC since TC is determined by Jddz, which is equivalent to J0 in
the Liechtenstein et al paper [48], not z only. Because 〈Edσ 〉Mi contains the single-particle
energy besides the interaction energy, and 〈Ĥh(0)〉Mi contains only the interaction energy, the
relationship between 〈Edσ 〉Mi and 〈Ĥh(0)〉Mi can be constructed via the following equation:∑

dσ

〈Edσ 〉Mi = 〈Ĥh(0)〉Mi + c
∑
dσ

〈ndσ 〉Mi (i = 1, 2), (13)

where c is a constant independent of the magnetic configuration. Given any two configurations,
the constant c can be cancelled, so the exchange constant Jdd is obtained. In the following
numerical calculation, a ferromagnetic (F) configuration (θ1 = 0) and an antiferromagnetic
(AF) configuration (θ2 = π) are used to calculate Jdd for a negative Jdd, and a F configuration
(θ1 = 0) and a canted ferromagnetic (θ2 = 0.3π) one are used to calculate Jdd for a positive Jdd.
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Because equation (10) is applicable only for small spin deviations from the ferromagnetic
ground state [48] and numerical stability requires spin deviations that are not too small, a
small and finite θ2 = 0.3π is adopted for ferromagnetic coupling in actual calculations.

The method used to calculate Jdd using equation (13) is consistent with an existing
method [48, 49]. When the variation of

∑
dσ 〈ndσ 〉 between two magnetic configurations

is small enough, equation (13) is equivalent to
∑

dσ 〈Edσ 〉M1 − ∑
dσ 〈Edσ 〉M2 = 〈Ĥh(0)〉M1 −

〈Ĥh(0)〉M2 . Alternatively, we can use the quasiparticle energy variation to determine Jdd. This
should be an acceptable approximation [49], since it has been proved that the total energy
variation coincides with the sum of one-particle energy changes for the occupied states at the
fixed ground state potential [48].

Because the calculation in this paper is done at a fixed Fermi energy, the occupation number
may change with the magnetic configuration. In order to eliminate this effect, we introduce a
constant c in equation (13). According to density functional theory, the non-interactive part of
the quasiparticle energy can be expressed as a function of

∑
dσ 〈n̂dσ 〉. Constructing a power

series expansion to the function and omitting terms higher than the second-order ones, we can
write the non-interactive part of the quasiparticle energy in the form c

∑
dσ 〈n̂dσ 〉. Hence the

constant c in equation (13) comes from a linear approximation to the non-interactive part of
the quasiparticle energy, and the introduction of c can eliminate the effect due to occupation
number change with magnetic configuration to a certain extent.

An analogous procedure is used to obtain Js(p)−d. The s(p)–d exchange Hamiltonian

Ĥs(p)−d = − 1
2

∑
nkk′ iσσ ′

J n
s(p),d(k, k ′) �̂Si · ĉ†

nkσ �σσσ ′ ĉnk′σ ′ei(�k−�k′)·�ri (14)

is usually used to describe the coupling between local magnetic moments and itinerant
electrons. An operator

Ĥs(p)−d(nkσ) = − 1
2

∑
i

J n
s(p),d(k, k) �̂Si · ĉ†

nkσ �σσσ cnkσ (15)

is also introduced to simplify the expression, but only a ferromagnetic configuration is
considered for the calculation of J n

s(p),d [45]. The energy difference between 〈Ĥs(p)−d(nk↓)〉F

and 〈Ĥs(p)−d(nk↑)〉F is written as

〈Ĥs(p)−d(nk↓)〉F − 〈Ĥs(p)−d(nk↑)〉F

= 1
2 x N S J n

s(p),d(k, k)
∑

d

〈n̂d↑ − n̂d↓〉F〈n̂nk↑ + n̂nk↓〉F
(16)

in the mean field approximation. Here x is the concentration of magnetic atoms, x N is the
population of magnetic atoms, and the label F denotes a ferromagnetic configuration. The
relationship between 〈Enkσ 〉F and 〈Ĥs(p)−d(nkσ)〉F has a simple form:

〈Enk↓〉F − 〈Enk↑〉F = 〈Ĥs(p)−d(nk↓)〉F − 〈Ĥs(p)−d(nk↑)〉F, (17)

and finally the s(p)–d exchange constant J n
s(p),d is also obtained.

3. General considerations on formulae

3.1. fdi,d1 i1 and the phase factor effect

In our calculation method, the effect of correlation between magnetic atoms is included via
fdi,d1 i1 in equation (4) or (8). According to equation (2), fdi,d1 i1 can be interpreted as a
dynamical effective overlap integral, and | fdi,d1 i1 |2 is proportional to the probability of an
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Figure 1. An illustration of the effect of the phase factor on the local density. A simple cubic
superlattice is assumed for sites occupied by magnetic atoms, and | fdi,d1 i1 | = 0.02 eV for the
nearest-neighbour site pairs and | fdi,d1 i1 | = 0 for other site pairs. A lower centre of gravity of the
local density is obtained in the situations with θ = 0 (π ) and 3π/4 (7π/4).

electron going from state |d1i1σ 〉 to state |diσ 〉; hence fdi,d1 i1 can also be interpreted as a
transition probability amplitude.

Since fdi,d1 i1 is a complex number, its phase factor plays an important role in the
determination of the exchange type, ferromagnetic or antiferromagnetic. We will see this from
a simplified case. We suppose that the sites occupied by magnetic atoms form a superlattice
with a simple cubic structure and that fdi,d1 i1 is a nonzero complex constant (its dependences
on ω and � are neglected here) for the nearest-neighbour sites i and i1, and zero for other site
pairs. Denoting the nonzero complex constant fdi,d1 i1 as | f |eiθ and supposing that ediσ = 0,
we study the characteristic of the local density determined by equation (6) for various phase
factors. Figure 1 shows the local density for | f | �= 0 and the phase factor θ = 0 (π), π/4
(5π/4), π/2 (3π/2), and 3π/4 (7π/4). Because the local density for | f | = 0 has no structure
except an isolated peak at ω = 0, it is not shown in figure 1. The centre of gravity of the local
density for θ = 0 (π) becomes lower in comparison with that for | f | = 0 if the state is partly
filled. For θ = 3π/4 (7π/4), the centre of gravity of the local density is lower, without any
extra conditions. The two cases facilitate ferromagnetic exchange in the simplified examples.

A straightforward way to verify the effect of the phase factor on the exchange constant
is to study the relationship of the phase factor with the position of the positive maximum
point of the Jdd(Ed) curve in a single-valence-band model with a dispersion relation
E(�k) = −(W/2) + (W/6)

∑3
i=0 cos(ki a) (W is the bandwidth; a is the lattice constant).

For a given Ed , the primary contributions to fdi,d1 i1 come from the valence electrons with
energy E(�k) = Ed . The corresponding momentum of the valence electron may be called
the resonant momentum, �kres. In the approximation of nearly free electrons, the magnitude
of the resonant momentum can be estimated from Ed = −(W/12)(kresa)2. If r denotes the
mean distance between the nearest-neighbour magnetic atoms, |kres|r can be regarded as a
certain measure of the phase factor θ . The Ed , |kres|, and |kres|r corresponding to the positive
maximum of Jdd(Ed) for various valence bandwidths W are listed in table 1. Although Ed

(the position of the maximum point) depends on W , kresr is almost a constant, 0.88π , which is
between 3π/4 and π . This is consistent with the above discussion of phase factors. It should
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Table 1. The corresponding values of Ed , |kres|, and |kres|r when Jdd(Ed ) reaches a positive
maximum point for various values of W . W is the width of a simple cubic valence band, and its
top is at the zero point. The parameters in the calculation of Jdd are T = 0.1 K, EF = 0.0 eV,
Ud = 7.0 eV; the s(p)–d mixing parameter Tdnσ = 0.2 eV. |kres|r approaches a constant, 0.88π .

W (eV) Ed (eV) |kres| (1/a) |kres|r
2.0 −0.22 1.14 0.91π

2.5 −0.24 1.07 0.85π

3.0 −0.30 1.09 0.87π

3.5 −0.36 1.11 0.88π

4.0 −0.36 1.10 0.88π

be mentioned here that this phase factor effect is a quantum interference effect in essence, and
the effect can be used to tailor the magnetic properties of DMS.

3.2. Tdnσ and the k-dependence

We have mentioned that in a general case Tdnσ should depend on the momentum k and it may
be denoted by Tdnσ (�k). The concept of resonant momentum facilitates the understanding of
the neglect of the k dependence of the mixing parameter Tdnσ (�k). For a fixed Ed , the dominant
contributions to fdi,d1i1 come from the resonant valence electrons and therefore a value averaged
over the �k points at the surface E(�k) = Ed can be adopted if the anisotropies of the exchange
constants are not considered. In this paper, N J n

s(p),d(k, k) is also calculated, in addition to
Jdd. Because the k in N J n

s(p),d(k, k) is usually different from the resonant momentum kres, a

different value for Tdnσ should be used in equation (7). According to Larson’s results, Tdnσ (�k)

at k = 0 is about four times the corresponding mean value in II–VI DMS [45]. So four times
Tdnσ replaces Tdnσ in equation (7) when N J n

s(p),d(0, 0) is calculated. In Larson’s paper this
substitution is also used to determine Tdnσ from N J n

s(p),d(0, 0) [45].
Briefly, a parameter Tdnσ independent of k can be used to calculate exchange constants

if we remember that a different value, e.g. four times Tdnσ , of Tdnσ in equation (7) should be
used in the calculation of N J n

s(p),d(0, 0).

4. Results and discussion based on a double-valence-band model

4.1. The double-valence-band model

In this paper a double-valence-band model, in which a simple cubic dispersion relation
Ee

nk = En + 2Tn
∑3

i=1 cos(ki a) (a is the lattice constant, En is the energy band centre or
the on-site energy, and Tn is the overlap integral) is adopted, is used to calculate exchange
constants and their various parameter dependences. In this paper, we concentrate our attention
on situations where Ed is in the range from the valence band top to −4.0 eV below the valence
band top and the gap is not too small. Because Ed is out of the conduction band, the main
contribution to fdi,d1 i1 comes from valence bands (see appendix C). The upper valence bands
of the semiconductors with a zinc-blende structure consist of three energy bands: one wide
band and two narrow bands [50]. Due to spin–orbit coupling, the wide band shifts down by �

with respect to the two narrow bands. � is valence split, and dependent on the actual material.
For example, � is about 0.34 eV for GaAs, and 1.0 eV for CdTe. The two narrow bands can
be treated as two degenerate bands if the difference between the dispersions along directions
such as 	 → K is neglected. So we can use one band to represent the two narrow bands if
the corresponding mixing parameter is enlarged to

√
2 times original value, and use the other

band to represent the wide band.
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Figure 2. A schematic illustration of the valence band structure in the two-valence-band model.
Two bands in panel (a) and panel (b) are intended to model the valence bands of n-CdTe
(EF = 1.0 eV) and p-GaAs (EF = 0.0 eV), respectively. The positions of Ed are suitable for
Mn-doped DMS, but Ed will sweep from −4.0 to −0.20 eV in our calculation.

In order to find appropriate values for parameters En and Tn, we should consider the
basic characteristic of the valence band for a particular material. In this paper our main task
is to study the exchange interaction in III–V DMS. In order to test the quasiparticle method
and to understand why ferromagnetism can be obtained in III–V DMS, exchange constants of
II–VI DMS are also calculated. So we chose CdTe and GaAs as two typical host materials
for II–IV DMS and III–V DMS, respectively, to determine model parameters. A schematic
illustration of the valence band is shown in figure 2. Two bands with parameters E1 = −2.5 eV,
T1 = 0.25 eV and E2 = −1.0 eV, T2 = 1/6 eV are used for CdTe [50–52], and two bands
with parameters E1 = −3.34 eV, T1 = 0.5 eV and E2 = −1.0 eV, T2 = 1/6 eV are used
for GaAs [50, 53]. It should be mentioned that we should also consider the characteristic of
the valence state density besides dispersions when we set model parameters for a particular
material. For example, the width of the wide band branch in CdTe is about 3.5 eV [51] (−4.5
to −1.0 eV) or 4.0 eV [50] (−5.0 to −1.0 eV) determined from E(k), but the valence state
density of CdTe shows a valley at about E = −3.5 eV [50, 52], so a band with width 3.0 eV
(−4.0 to −1.0 eV) is used in figure 2. In addition, EF is also shown in figure 2. EF = 1.0 eV in
panel (a) and EF = 0.0 eV in panel (b) indicate that an n-type and a p-type host semiconductor
are considered here, respectively.

In the vicinity of the valence band edge or bottom, we can use the effective mass
approximation to Enk in equation (8), and an analytical expression (see appendix C):

fdi,d1 i1 =
∑

n

Tdnσ T ∗
d1nσ

Tn

eikn |�ri1 −�ri |

4π |�ri1 − �ri | , Im(kn) > 0, (18)
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Figure 3. The exchange constant Jdd as a function of Ed . CPA denotes our CPA result,
CPA−NC denotes our CPA result without the impurity scattering correction in fdi,d1 i1 (equation (4)
instead of (8)). Three-level model denotes the result according to Larson’s three-level model.
Antiferromagnetism is obtained for Ed in the vicinity of the band bottom, and ferromagnetism
is obtained for Ed in the vicinity of the band top. The parameters for the valence band used
for panels (a) and (b) are the same as those used for figures 2(a) and (b), respectively. Other
parameters are T = 0.1 K, Ud = 7.0 eV; the s(p)–d mixing parameter Td1σ = 0.2 eV [45]3, and
Td2σ = √

2Td1σ . The 3d magnetic impurity concentration x is 6.4%.

is obtained for equation (8). Here kn is the pole on the upper complex half-plane of k for energy
band n, and has been called the resonant momentum in the above section. The multiplier
eikn |�ri1 −�ri | in equation (18) guarantees that fdi,d1 i1 fd1 i1,di decays more rapidly, or at least not
slower, than |�ri1 −�ri |−2; hence only the nearest-neighbour impurity points are to be considered
in the sum on i1 in equation (6). Because only those electrons at a local level near the Fermi
energy EF have a significant polarization of a valence electron, only one d level is considered
in our actual calculation.

In the following context, the microscopic parameter (Ed , Tdnσ , EF, mean distance between
magnetic impurities) dependences of the exchange constant are investigated in the double-
valence-band model where the valence band parameters are fixed, and discussions of relevant
experimental results are also presented.

4.2. The Ed dependence of Jdd and Js(p),d

Figure 3 shows the Ed dependence of Jdd in the double-valence-band model. An
antiferromagnetic coupling is obtained for Ed in the vicinity of the band bottom, and a
ferromagnetic coupling is obtained for Ed in the vicinity of the band top. The calculated
Jdd for II–VI DMS is consistent with Larson’s three-level model for Ed , around −3.4 eV.
Compared with Larson’s model, the magnitude of Jdd decreased more rapidly with Ed and

3 Due to spin–orbit coupling, Tdn↑ �= Tdn↓ in a strict way, but we can set Tdn↑ = Tdn↓ since only the up-spin branch
of the d state is filled due to strong Hubbard repulsion.



7466 J H Cai and G Q Liu

shows a plateau in the range from −4.0 to −0.20 eV except for the peaks located at the band
bottom or top. As anticipated in our previous discussion, ferromagnetism is obtained for
shallow d energy levels; however, antiferromagnetism is obtained according to the three-level
model.

The maximum of Jdd in figure 3(b) reaches about 4.0 meV. According to the mean field
formula kBTC = (2z/3)[S(S + 1)]Jdd for the Curie point, the corresponding Curie temperature
TC is about 140 K. The highest TC obtained in experiments is 110 K for Ga1−x Mnx As [23].
Our calculated Jdd agrees well with the experimental value in scale and is also consistent
with the theoretical results based on the mean field Zener model [26, 27] and other theoretical
approaches [28, 30].

If the impurity scattering correction is not taken into account in f di,d1i1 (equation (4) instead
of (8)), the Jdd(Ed) curve still exhibits a basic characteristic: negative Jdd for Ed in the vicinity
of the band bottom and positive Jdd for Ed in the vicinity of the band top, but shows a change
in the magnitude of Jdd and a shift of the peak position. Comparison with the theoretical result
from the three-level model at Ed = −3.4 eV indicates that an impurity scattering correction
in fdi,d1 i1 may be necessary for a quantitative calculation of Jdd.

In experiments, Ed depends on the combination of host material and magnetic atom. A
good example as regards this point is provided by Mn DMS. The d level is deep in II–VI DMS;
e.g., Ed = −3.4 eV in (Cd, Zn)0.9Mn0.1(Te, Se, S) [45]. However, direct measurements of
the electronic states in Ga1−x Mnx As from angle resolved photoemission spectroscopy show
Mn-induced states both 3–4 eV below the top of the valence band and also very near the
Fermi energy [54, 55]. In the s(p)–d mixing model, shallow Ed can produce such Mn-induced
states near the Fermi energy EF. The Ed dependence of Jdd maybe used to explain the facts
that antiferromagnetism dominates in II–VI DMS [45] and ferromagnetism emerges in III–V
DMS [1–4].

Ed also depends on the experimental procedure. According to crystal field theory, Ed

should depend on the site which is occupied by the magnetic atom. It has been shown that the
location of Mn sites in Ga1−x Mnx As is affected by the annealing procedure [40]; therefore Ed

is also changed in the procedure. We will return to this topic in the next subsection.
Figure 4 shows the Ed dependence of N J 2

s(p),d(0, 0). As discussed in section 3.2, two sets

of Tdnσ are adopted in the calculation of J 2
s(p),d(0, 0). Tdnσ for a band-edge state is about 0.8 eV

for II–IV DMS [45], so Tdnσ = 0.8 eV is used in equation (7). The calculated N J 2
s(p),d(0, 0)

for II–IV DMS (panel (a)) agrees well with the experimental result and the theoretical result
from Schrieffer–Wolff transformation, around Ed = −3.4 eV [46]. The experimental value
of N J 2

s(p),d(0, 0) for III–V DMS is about 1.0–3.3 eV [56]. The calculated N J 2
s(p),d(0, 0) (panel

(b)) is about 3–4 eV for a shallow d energy level, and it also agrees well with the experimental
result. The formula used to calculate J 2

s(p),d(0, 0) based on Schrieffer–Wolff transformation is
not suitable for a shallow d energy level [46], and the corresponding N J 2

s(p),d(0, 0) diverges
when Ed approaches the valence band edge. In our calculation, the divergence difficulty is
overcome, and a finite value for J n

s(p),d is obtained.

4.3. The Tdnσ dependence of Jdd

It has been shown that the maximum of Jdd reaches about 4 meV in figure 3(b). The maximum
can be considerably increased if a larger mixing parameter Tdnσ is used. Since Tdnσ is a
parameter dependent on the particular material, it is necessary to consider the Tdnσ dependence
of Jdd. The value of Tdnσ is in the range of 0.20–0.35 eV for II–VI DMS [45],but corresponding
values for III–V DMS are rather scarce in the literature. Without loss of generality, the mixing
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Figure 4. N J 2
s(p),d(0, 0) as a function of Ed . Tdnσ in equation (7) is 0.8 eV, and Tdnσ in equations (8)

is 0.2 eV. The corresponding result from Schrieffer–Wolff (SW) transformation is also shown for
comparison [46]. The parameters for the valence band used for panels (a) and (b) are the same as
those used for figures 2(a) and (b), respectively. The other parameters are the same as those for
figure 3.

Figure 5. The maximum of Jdd(Ed) as a function of Td1σ (Td2σ = √
2Td1σ ). The other parameters

are the same as those for figure 3(b).

strength dependence of Jdd is investigated also in the range of 0.20–0.35 eV. Figure 5 shows
the mixing strength dependence of the maximum of Jdd(Ed), which increases with the mixing
strength.

According to Larson’s results, Tdnσ (k) has a maximum at k = 0 and decreases in all
directions away from k = 0, vanishing at the X point for II–VI DMS [45]. It may be a
reasonable assumption that this conclusion is also appropriate for III–V DMS since they have
the same zinc-blende crystal structure as II–VI DMS. Therefore, a larger Tdnσ should be adopted
in the calculation if Ed increases, since the corresponding resonant momentum decreases with
Ed . This also means that Tdnσ increases with Ed in real DMS.
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Figure 6. The exchange constant Jdd as a function of EF. The parameters are the same as those
for figure 3(b).

Tdnσ depends sensitively on the microscopic environment. In the semiconductors with a
zinc-blende structure, the valence band state can be regarded as a linear combination of sp3

hybrid atomic orbital states. When magnetic impurity atoms occupy the Ga sites, there is
an opportunity to obtain a large s(p)–d mixing strength Tdnσ since the sp3 orbital state has a
strong orientation dependence. When magnetic impurity atoms occupy the interstitial sites,
Tdnσ should be small, because the volume overlap of the d state and sp3 orbital state is small
due to the orientation dependence of the sp3 orbital state. The change of the lattice constant
of the crystal also leads to a variation of Tdnσ . Tdnσ usually increases with decreasing lattice
constant, since the volume overlap of the d state and the sp3 state also increases.

It has been shown that the location of Mn sites in Ga1−x Mnx As is affected by the annealing
procedure [40]. Accompanying the change of Mn sites in the annealing procedure, the carrier
density also shows a complicated change. The carrier density increased from 6 × 1020 to
1 × 1021 cm−3 for a Ga1−x Mnx As film annealed at 282 ◦C, the Curie temperature TC also
increases from 67 to 111 K, and the Mn interstitial concentration is reduced. On the other
hand, a sample annealed at 350◦C showed no change in the hole concentration, but TC decreased
to 49 K, and the interstitial Mn and a significant fraction of the substitutional Mn form random
precipitates [40]. This experiment shows that the concentration of substitutional Mn plays an
important role in achieving strong ferromagnetism in III–V DMS. As discussed in the above
paragraph, Tdnσ decreases when Mn atoms move from their substitutional sites to interstitial
sites or form certain random precipitates; hence TC is decreased. The annealing effect cannot
be explained by just the variation of the hole concentration, since TC decreased to 49 K but
the hole concentration was not changed when the sample was annealed at 350 ◦C. So the Tdnσ

dependence of Jdd may be helpful for interpreting these complicated phenomena.

4.4. The EF dependence of Jdd

Figure 6 shows the EF dependence of Jdd. Jdd increases when the Fermi energy EF is decreased
around the valence band top. However, the EF dependence of Jdd becomes less significant if
Ed is decreased. This result can be explained as reflecting the fact that the change of EF cannot
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Figure 7. The impurity concentration (x) dependence of Jdd. The parameters are the same as those
for figure 3(b).

lead to a significant variation of the centre of gravity of the state density for a relatively deep
d energy level.

In a p-type semiconductor, EF is in a gap and near Ev, and the p-type carrier density
increases with decreasing EF, so this result indicates that Jdd increases with the p-type carrier
density [4, 26]. For Ga1−x Mnx As the carriers are provided by Mn atoms, and the carrier
density is controlled by the Mn impurity concentration x , so Jdd increases with small x . In
experiments, EF can also be increased by doping Si into p-type Ga1−x MnxAs, so Jdd decreases
with the concentration of Si [41].

The ferromagnetism of DMS used to be explained as carrier-induced ferromagnetism, and
this interpretation indicates that free carriers play an important role in the ferromagnetism in
DMS. Some experimental results and theoretical works have proved this point. Dietl et al have
calculated TC for various DMS, and found that TC increases with the free carrier density [26].
This point has been verified by some experimental results [22, 38];however, some experimental
results [20, 39] reveal that the dependence of TC on the carrier density is not as significant
as stated. The controversy may indicate that free carriers are not an essential factor for the
ferromagnetism of DMS. In fact, ferromagnetism exists in p-type DMS and also in n-type
DMS, and even in insulating ‘DMS’.

In our quasiparticle method, the carrier concentration is not directly included as a
parameter, but the Fermi energy EF plays the same role as the carrier concentration in other
models. It has been shown that only when EF approaches the valence band edge and Ed is
shallow enough can the change of EF lead to a significant variation of the exchange constant
Jdd. Hence only EF is adjusted to an appropriate position [38]; the magnetism can be changed
via change of the carrier concentration.

4.5. The impurity concentration dependence of Jdd

In DMS, the mean distance between 3d atoms decreases with x , so it is necessary to study
the effect stemming from the variation of distance in our calculation. Figure 7 shows that Jdd
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increases with small x , then reaches a maximum, and finally decreases sharply with x . The
maximum position increases with decreased Ed . This phenomenon can be explained by the
phase factor. Because the resonant momentum increases with decreasing Ed , the phase factor
can be maintained at a fixed value by decrease of the mean distance or, alternatively, increase of
x . For a relatively deep level and low concentration, such as Ed = −0.44 eV and x < 5%, our
results agree well with experimental results [23] and existing theoretical results [26, 27, 30].
However, for a relatively shallow level, such as Ed = −0.20 eV, an oscillatory dependence of
Jdd on x emerges. The oscillatory phenomenon can be caused by several factors as explained
in what follows.

(i) The phase factor effect: since the mean distance between two magnetic impurities
decreases with x , the phase factor depends on x .

(ii) The filling factor effect: since the d energy is shallow, the filling factor is affected by x ,
and this will lead to an extra change of the centre of gravity of the d state.

(iii) Band-edge singularity: the point �k = 0 is a singularity for the density of the valence band
states; a slight change of x may cause a significant variation of Jdd for a shallow d energy
level.

The oscillatory dependence of Jdd on x indicates that Jdd may decrease with large x in some
DMS, which have valence band structures similar to our double-valence-band model.

In experiments, the magnetic impurity concentration x not only means the average distance
between magnetic atoms, but also determines other parameters, such as EF (carrier density),
so compensation and precipitation are usually considered in explaining the concentration
dependence of TC. It has been shown that the concentration dependence of TC can be
approximately described in terms of the corresponding hole concentration dependence of
Ga1−x Mnx As [23]. There are some extreme cases, in which the hole density is low and is
nearly independent of x , and the magnetic impurity concentration dependence of Jdd reveals
a ‘pure’ distance dependence of Jdd. It has been shown that TC increases linearly with x up to
about 0.07 and decreases with x beyond 0.07 for In1−x Mnx As [39]. The reduced TC observed
beyond x = 0.07 is not due to a decrease in hole concentration since the hole concentration is
nearly the same. This can be explained if one assumes that more Mn atoms exist in the forms of
interstitials and random precipitates for x beyond 0.07 [40]. Another possibility is considering
the distance dependence of Jdd. In fact, Slupinski et al have explained the ferromagnetism
with relatively low hole concentration as a result of ferromagnetic local pairing. This indicates
that the distance between magnetic atoms should be an independent factor, to be considered
for III–V DMS.

4.6. Unsymmetrical broadening of the d state density

Figure 8 shows the local density for the point at Ed = −0.20 eV in figure 3(b) (the state
densities for other points in figure 3(b) are similar and are not shown). Comparing figure 8
with figure 1, we find that the shape of the state density is very similar to the case for θ = 3π/4
(7π/4) (θ is the phase factor of fdi,d1 i1 ) in figure 1. Comparing the density in ferromagnetic
alignment with that in antiferromagnetic alignment, we find that the broadening of the d state
density is unsymmetrical. There are two contrary trends in the variation of the density: one is
the broadening and decreasing of the density on the right of the quasiparticle peak; the other
is the compaction of the density towards the high energy side on the left of the quasiparticle
peak. The former trend primarily originates from the decrease of the d level lifetime, and
facilitates ferromagnetism. The latter trend facilitates antiferromagnetism (superexchange).
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Figure 8. The density of local d states. The parameters are the same as those for figure 3(b).

In the example, the former trend gains advantage over the latter trend; hence ferromagnetism
emerges.

The peak position of the Jdd(Ed) curve in figure 3 can be explained by the unsymmetrical
broadening of the d state density. If Ed is in the vicinity of the band top, the d state density
in the F configuration can only be broadened towards the low energy side since the band state
density tends to zero towards the high energy side, so ferromagnetism emerges. If Ed is in the
vicinity of the band bottom, the d state density in the F configuration can only be broadened
towards the high energy side since the band state density tends to zero towards the low energy
side, so antiferromagnetism emerges.

In a sense, our model calculation can bridge the discrepancy between the double-exchange
model and the Zener model. For EF < Ev and Ed → Ev, the d level is partly filled, and d
holes are produced. Since the d energy level is very shallow, the valence band electron is
pushed away in the vicinity of the Fermi energy EF (see equation (7)); a half-metallic state
can be obtained, and therefore the double-exchange model may be appropriate for the case of
a shallow energy level. For EF > Ev and a slightly deeper Ed , there are almost no d holes,
and the ferromagnetism originates from the decrease of density on the high energy side; hence
the Zener model may be more appropriate for the case of a relatively ‘deep’ energy level.

5. Conclusion

In summary, a quasiparticle method based on the s(p)–d mixing model is used for the study of
ferromagnetism in III–V DMS. In comparison with other approaches, the quasiparticle method
provides a general framework for incorporating other interactions [43], and it is suitable for
a more extensive parameter region, e.g., from II–IV DMS to III–V DMS. The local d state
density shows a lowering centre of gravity of the d level due to unsymmetrical broadening
when ferromagnetism emerges in DMS. Our calculation demonstrates that a shallow d energy
level, low Fermi energy level, large s(p)–d mixing strength and appropriate magnetic impurity
concentration are important for achieving a strong ferromagnetism in III–V DMS. Relevant
experimental results, especially ones that are difficult to understand in the framework of existing
models, are interpreted on the basis of our calculation.
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Appendix A. A detailed derivation of the Green function 〈〈âdiσ|â†
d′i′σ′ 〉〉

In the Hartree–Fock approximation,
∑

diσ Ud〈n̂diσ 〉n̂diσ (〈· · ·〉 denotes the thermal average) is
substituted for the Hubbard repulsion term 1

2

∑
diσ Udn̂diσ n̂diσ in equation (1), so the s(p)–d

mixing Hamiltonian is rewritten as

Ĥ =
∑
diσ

Edn̂diσ +
∑
diσ

Ud〈n̂diσ 〉n̂diσ +
∑
nkσ

Ee
nkĉ†

nkσ ĉnkσ

+
1√
N

∑
dinkσ

(Tdnσ ei�k·�ri â†
diσ ĉnkσ + T ∗

dnσ e−i�k·�ri ĉ†
nkσ âdiσ ). (A.1)

The equation of motion for a retarded Green function 〈〈Â|B̂〉〉 takes the form [57–59]

ω〈〈Â|B̂〉〉 = 〈{ Â, B̂}〉 + 〈〈[ Â, Ĥ ]|B̂〉〉, (A.2)

where Â, B̂ are any two operators, and { Â, B̂} denotes ÂB̂ + B̂ Â and [ Â, B̂] denotes Â B̂ − B̂ Â.
In this paper we adopt the notation 〈〈Â|B̂〉〉 instead of 〈〈Â; B̂〉〉 for the Fourier frequency
transform of the double-time retarded Green function 〈〈Â(t); B̂(t ′)〉〉 [59].

According to equation (A.2), we can write down the following two equations:

(ω − Ed − Ud〈n̂diσ 〉)〈〈âdiσ |a†
d ′i ′σ ′ 〉〉 = δdiσ,d ′ i ′σ ′ +

1√
N

∑
nk

Tdnσ ei�k·�ri 〈〈ĉnkσ |a†
d ′i ′σ ′ 〉〉, (A.3)

(ω − Ee
nk)〈〈ĉnkσ |a†

d ′i ′σ ′ 〉〉 = 1√
N

∑
d1i1

T ∗
d1nσ e−i�k·�ri1 〈〈âd1i1σ |a†

d ′i ′σ ′ 〉〉. (A.4)

Eliminating 〈〈ĉnkσ |â†
d ′i ′σ ′ 〉〉 from equations (A.3) and (A.4), we obtain equation (2).

Introducing an effective field �(diσ), we can write equation (2) in another form:

(ω − �(diσ))〈〈âdiσ |â†
d ′i ′σ ′ 〉〉 = δdiσ,d ′ i ′σ ′ + (ediσ − �(diσ))〈〈âdiσ |â†

d ′i ′σ ′ 〉〉
+

∑
d1i1 �=di

fdi,d1 i1(σ )〈〈âdiσ |â†
d ′i ′σ ′ 〉〉. (A.5)

Taking 〈〈âdiσ |â†
d ′i ′σ ′ 〉〉 determined from equation (A.5) back into equation (A.5), we obtain

(ω − �(diσ))〈〈âdiσ |â†
d ′i ′σ ′ 〉〉 = δdiσ,d ′ i ′σ ′

+

(
ediσ − �(diσ) +

∑
d1i1 �=di

fdi,d1 i1(σ ) fd1i1,di (σ )

ω − �(d1i1σ)

)
〈〈âdiσ |â†

d ′i ′σ ′ 〉〉

+
∑

d1i1 �=di

fdi,d1 i1(σ )(ed1i1σ − �(d1i1σ))

ω − �(d1i1σ)
〈〈âd1i1σ |â†

d ′i ′σ ′ 〉〉

+
∑

d1 i1 �=di

d2i2 �=d1i1,di

fdi,d1 i1(σ ) fd1 i1,d2i2(σ )

ω − �(d1i1σ)
〈〈âd2 i2σ |â†

d ′i ′σ ′ 〉〉. (A.6)

If we require

�(diσ) = ediσ +
∑

d1i1 �=di

fdi,d1 i1(σ ) fd1 i1,di (σ )

ω − �(d1i1σ)
, (A.7)

and omit the last two terms, then

(ω − �(diσ))〈〈âdiσ |â†
d ′i ′σ ′ 〉〉 ≈ δdiσ,d ′ i ′σ ′ . (A.8)

The method for expanding the Green function shares the idea of the CPA for binary alloy
theory [47]. In binary alloy theory, an effective propagator G is also used to expand the Green
function G, and G takes the form

G = G + G T G, (A.9)
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Figure A.1. A comparison between various solutions for the TBH. t = 0.02 eV, which is close to
fdi,d1 i1 (σ ), is assumed. The CPA solution can characterize well the essence of the extended state
in the TBH.

where T is usually called the T -matrix, which is written as

T = V + V G T , (A.10)

where V is the difference between the real Hamiltonian Ĥ and the effective Hamiltonian. If
T = 0, then G = G. However, it is usually difficult to resolve T = 0 exactly, and some
approximations are used. For the binary alloy problem, V is decomposed into v1 and v2; T is
also decomposed into t1 and t2, and T = 0 is approximated as∑

i=1,2

ci t i = 0, (A.11)

where ci is the concentration of the i th constituent. In our problem the situation is more
complicated: fdi,d1 i1(σ ) has more possible values, and the approximation of the binary alloy
problem is not applicable here. Here an approximation

T diσ,diσ = ediσ − �(diσ) +
∑

d1i1 �=di

fdi,d1 i1(σ ) fd1 i1,di (σ )

ω − �(d1i1σ)
(A.12)

is adopted for evaluating T . Further considering averaging over a random distribution of
magnetic atoms and requiring Tdiσ,diσ = 0, we obtain equation (6). In this paper we also use
CPA as the name for the approximation.

The validity of this approximation is tested here. A tight binding Hamiltonian (TBH) Ĥ =∑
〈i, j〉 ta†

i a j and an ordered, simple cubic lattice are used to calculate the local state density.

The exact solution can be obtained through a transformation of âi = (1/
√

N )
∑

k e−i�k·�ri âk .
Another possible approach is via perturbative expansion, where the ‘bare’ propagator ω−1 is
used. The second-order perturbative solution can be obtained from equation (A.7) where zero
takes the place of ediσ , t takes the place of fdi,d1 i1 , and ω takes the place of ω − �(d1i1σ).
Figure A.1 shows the local state densities from the exact solution, the CPA solution, and the
second-order perturbative solution. In comparison with the exact solution, our CPA one is
more believable than that from the second-order perturbative approximation. This may be an
important reason that only very weak ferromagnetism [60] was obtained in the conventional
perturbative approach [45].
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Appendix B. Details on the averaging in the CPA

In this appendix the details on the averaging over a random distribution of magnetic atoms are
presented.

First we should consider the averaging in the subspace of spin freedom. For an operator
X̂(σ ), it can be expressed as two pure numbers X (1), X (2) in its local spin representation.
Suppose that the angle between the local spin axis and the global spin axis is θ ; then 〈↑ |X | ↑〉,
〈↓ |X | ↓〉 in the global spin representation can be written as

〈↑ |X | ↑〉 = cos2(θ/2)X (1) + sin2(θ/2)X (2),

〈↓ |X | ↓〉 = sin2(θ/2)X (1) + cos2(θ/2)X (2).
(B.1)

Further, we need to find a distribution function to describe the random distribution of
magnetic atoms. Suppose that the probability of a site being occupied by a magnetic atom is
pl on a crystal axis; then the probability of a site not being occupied is 1 − pl , so the distance
i between two nearest magnetic atoms exhibits the following distribution:

P(i) = pl(1 − pl)
i−1 (i = 1, 2, . . .). (B.2)

We are ready to show that the distribution has the properties
∞∑

i=1

P(i) = 1,

∞∑
i=1

P(i)i = 1/pl.

(B.3)

If the concentration of magnetic atoms is x , the mean separation of magnetic atoms is x−1/3.
Let pl = x1/3; then P(i) can describe well the random distribution of magnetic atoms.

There exist many crystal axes with different minimal separations; a variety of crystal axes
should be included in the summation in equation (6). In our actual calculation, only 〈100〉,
〈010〉, 〈001〉 are considered, and the others are neglected since a series of simplifications have
been made in our model calculation.

Appendix C. The approximate expression for fdi,d1i1

The dispersion of a simple cubic energy band takes the form

Enk = En + 2Tn(cos(kx) + cos(ky) + cos(kz)), (C.1)

where the unit of k is 1/a and a is the lattice constant. Constructing a power series expansion
and omitting terms higher than the second-order ones, we can write Enk as

Enk = En + 6Tn − Tnk2 (C.2)

in the vicinity of the band top. There is a similar expansion for the k points in the vicinity of
the band bottom.

Taking the approximate expression for Enk into equation (8), we can write

fdi,d1 i1(σ ) =
∑

n

Tdnσ T ∗
d1nσ

Tn
F(an, bn, r), (C.3)

where an + ibn = [
ω − En − 6Tn − 1

N

∑
di

|Tdnσ |2
ω−�(diσ )

]
/(−Tn) and F(an, bn, r) is an integral

that takes the form

F(an, bn, r) = 1

(2π)3

∫
�k∈1B Z

ei�k·�r d3k

k2 − (an + ibn)
. (C.4)
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It is convenient to evaluate the integral defined by equation (C.4) in spherical coordinates.
Taking the θ and ϕ integrations first,

F(an, bn, r) = 1

4π2ir

∫ π

−π

keikr dk

k2 − (an + ibn)
. (C.5)

Because the main contribution comes from the k points in the vicinity of the pole, the limits
of the integral can be extended to infinity; hence,

F(an, bn, r) ≈ 1

4π2ir

∫ ∞

−∞
keikr dk

k2 − (an + ibn)
= 1

4πr
eikn r , (C.6)

where kn is the root of the equation k2 = an + ibn in the upper complex half-plane.
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